

Exercises for 'Functional Analysis 2' [MATH-404]

(17/02/2025)

Ex 1.1 (Some convex analysis)

Let X be a vector space. Recall that a subset $A \subset X$ is **convex** if, for all $x, y \in A$ and $\theta \in [0, 1]$, it holds that $\theta x + (1 - \theta)y \in A$. A function $f : A \rightarrow \mathbb{R}$ is convex if it satisfies $f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$ for all $x, y \in A$ and $\theta \in [0, 1]$.

- a) Show that if $(A_i)_{i \in I}$ is a family of convex subsets of X , then $A = \bigcap_{i \in I} A_i$ is also convex.
- b) If $B \subset X$ is any set, we define its **convex hull** by

$$\text{co}(B) = \left\{ \sum_{i=1}^n \lambda_i x_i : x_i \in B, \lambda_i \in [0, 1], \sum_{i=1}^n \lambda_i = 1, n \in \mathbb{N} \right\}$$

Show that $\text{co}(B)$ is the smallest convex set containing B .

- c) Show that if $(f_i)_{i \in I} : A \rightarrow \mathbb{R}$ is a family of convex functions, then $f(x) := \sup_{i \in I} f_i(x)$ is convex, too.

Solution 1.1: a) Let $x, y \in A$ and $\theta \in [0, 1]$. Then $x, y \in A_i$ for all $i \in I$ and by convexity of A_i we have $\theta x + (1 - \theta)y \in A_i$. Hence $\theta x + (1 - \theta)y \in A$ which proves the convexity of A .

b) Clearly $B \subset \text{co}(B)$ since $b = 1b$ for all $b \in B$. Next we prove the convexity. Fix $\theta \in [0, 1]$. Let $x = \sum_{i=1}^n \lambda_i x_i \in \text{co}(B)$ and $y = \sum_{i=1}^m \mu_i y_i \in \text{co}(B)$, i.e., $x_i, y_i \in B$ and $\lambda_i, \mu_i \in [0, 1]$ with

$$\sum_{i=1}^n \lambda_i = 1 = \sum_{i=1}^m \mu_i.$$

By a simple calculation we find that

$$\theta x + (1 - \theta)y = \sum_{i=1}^n \theta \lambda_i x_i + \sum_{i=1}^m (1 - \theta) \mu_i y_i.$$

Note that $\theta \lambda_i, (1 - \theta) \mu_i \in [0, 1]$ and

$$\sum_{i=1}^n \theta \lambda_i + \sum_{i=1}^m (1 - \theta) \mu_i = \theta + (1 - \theta) = 1.$$

Hence by definition $\theta x + (1 - \theta)y \in \text{co}(B)$ and consequently $\text{co}(B)$ is convex. It remains to show that every convex set S such that $B \subset S$ contains also $\text{co}(B)$. Let $(x_i)_{i=1}^n \subset B$. By induction

on n we prove that $x = \sum_{i=1}^n \lambda_i x_i \in S$ for any $(\lambda_i)_{i=1}^n$ with $\lambda_i \in [0, 1]$ for all $i = 1, \dots, n$ and $\sum_{i=1}^n \lambda_i = 1$. The case $n = 1$ is trivial since $x_1 \in B \subset S$. If $n \geq 2$, then without loss of generality $\lambda_n \neq 1$ and

$$\sum_{i=1}^n \lambda_i x_i = (1 - \lambda_n) \sum_{i=1}^{n-1} \frac{\lambda_i}{1 - \lambda_n} x_i + \lambda_n x_n$$

Since $\frac{\lambda_i}{1 - \lambda_n} \in [0, 1]$ and $\sum_{i=1}^{n-1} \frac{\lambda_i}{1 - \lambda_n} = 1$, the induction hypothesis yields that $\sum_{i=1}^{n-1} \frac{\lambda_i}{1 - \lambda_n} x_i \in S$ and by convexity of S it follows that $x \in S$.

c) Let $x, y \in A$ and $\theta \in [0, 1]$. Then for all $i \in I$ we have

$$f_i(\theta x + (1 - \theta)y) \leq \theta f_i(x) + (1 - \theta)f_i(y) \leq \theta f(x) + (1 - \theta)f(y).$$

Taking the supremum in i on the left hand side yields the claim.

Ex 1.2 (Properties of absorbing and balanced sets)

Let X be a vector space. Recall that a subset $A \subset X$ is:

- **absorbing** if for all $x \in X$ there exists $\varepsilon > 0$ such that for all $|t| \leq \varepsilon$ we have $tx \in A$;
- **balanced** if $\lambda A \subset A$ for all $\lambda \in \mathbb{R}$ with $|\lambda| \leq 1$.

Prove the following:

- If $(A_i)_{i \in I}$ is a family of absorbing sets, then $\bigcup_{i \in I} A_i$ is absorbing. In addition, show that if I is finite, also $\bigcap_{i \in I} A_i$ is absorbing.
- If $(A_i)_{i \in I}$ is a family of balanced sets, then $\bigcup_{i \in I} A_i$ and $\bigcap_{i \in I} A_i$ are balanced set.
- Let $A \subset X$ be an arbitrary set. Show that $\bigcup_{|\lambda| \leq 1} \lambda A$ is the smallest balanced set containing A , where $\lambda \in \mathbb{R}$ (the set is called the **balanced hull**).
- The convex hull of a balanced set is balanced.

Solution 1.2: a) Let $x \in X$ and $i_0 \in I$. Then there exists $\varepsilon > 0$ such that for all $|t| \leq \varepsilon$ we have $tx \in A_{i_0} \subset \bigcup_{i \in I} A_i$. Moreover, if I is finite, then for all $i \in I$ let $\varepsilon_i > 0$ be such that for all $|t| \leq \varepsilon_i$ it holds that $tx \in A_i$. Set $\varepsilon = \min_{i \in I} \varepsilon_i > 0$. Then for all $|t| \leq \varepsilon$ it holds that $tx \in A_i$ for all $i \in I$. Hence $tx \in \bigcap_{i \in I} A_i$.

b) Let $\lambda \in \mathbb{R}$ be such that $|\lambda| \leq 1$. Then

$$\lambda \left(\bigcup_{i \in I} A_i \right) = \bigcup_{i \in I} \lambda A_i \subset \bigcup_{i \in I} A_i.$$

For the intersection one has to be more careful since the equality $f(A \cap B) = f(A) \cap f(B)$ is not true in general. However, the needed inclusion \subset remains valid (for the scalar multiplication even equality holds true), so that

$$\lambda \left(\bigcap_{i \in I} A_i \right) \subset \bigcap_{i \in I} \lambda A_i \subset \bigcap_{i \in I} A_i.$$

c) Set $B = \bigcup_{|\lambda| \leq 1} \lambda A$. Then $A = 1A \subset B$. Next, let us show that B is balanced. Fix $\mu \in \mathbb{R}$

such that $|\mu| \leq 1$. For any $x \in B$ there exists $\lambda \in \mathbb{R}$ with $|\lambda| \leq 1$ such that $x \in \lambda A$. Hence $\mu x \in (\mu\lambda)A \subset B$ since $|\lambda\mu| = |\lambda||\mu| \leq 1$. Finally, for any balanced set C such that $A \subset C$ we infer from the definition of balancedness that $\lambda A \subset \lambda C \subset C$ for any $\lambda \in \mathbb{R}$ with $|\lambda| \leq 1$. Thus $B \subset C$ which shows B is the smallest balanced set containing A .

d) Let A be a balanced set and denote by $\text{co}(A)$ its convex hull. Then for any $\lambda \in \mathbb{R}$ with $|\lambda| \leq 1$ and $x = \sum_{i=1}^n \lambda_i x_i \in \text{co}(A)$ it holds that

$$\lambda x = \sum_{i=1}^n \lambda \lambda_i x_i = \sum_{i=1}^n \lambda_i \underbrace{(\lambda x_i)}_{\in A} \in \text{co}(A).$$

Ex 1.3 (On convex neighborhoods of the origin in TVS)

Let (X, τ) be a topological vector space (TVS).

a) Show that the interior of a convex set is convex.

b) Show that every neighborhood of the origin is an absorbing set.

c) Show that every neighborhood of the origin contains a balanced open neighborhood of the origin.

Hint: Use the continuity of the scalar multiplication.

d) Show that every convex neighborhood of the origin contains an absorbing, balanced, convex, open neighborhood of the origin.

Hint: You might prove/use that in any TVS the convex hull of an open set is open.

Solution 1.3: a) Let $A \subset X$ be convex and $x, y \in \text{int}(A)$. Fix $\theta \in [0, 1]$. Then there exist open sets $U_x, U_y \in \tau$ such that $x \in U_x \subset A$ and $y \in U_y \subset A$. Set $U = ((U_x) - x) \cap (U_y - y)$ which is an open set containing the origin. We claim that $\theta x + (1 - \theta)y + U \subset A$. Then by definition $\theta x + (1 - \theta)y \in \text{int}(A)$. For $u \in U$ it holds that

$$\theta x + (1 - \theta)y + u = \theta(x + u) + (1 - \theta)(y + u) \in \theta U_x + (1 - \theta)U_y \subset A,$$

where we used the convexity of A for the last inclusion.

b) Denote by N a neighborhood of the origin and let $U \in \tau$ be such that $0 \in U \subset N$. Fix $x \in X$. Suppose by contradiction that there exists a \mathbb{R} -valued sequence $t_n \rightarrow 0$ such that $t_n x \notin U$ for all $n \in \mathbb{N}$. Then the sequence $x_n := t_n x$ cannot converge to 0, which contradicts the continuity of the scalar multiplication.

c) Let N and U be as in b). Then by the continuity of the scalar multiplication there exists an open set V in $\mathbb{R} \times X$ such that $\lambda x \in U$ for all $(\lambda, x) \in V$. In particular, $(0, 0) \in V$. By the definition of the product topology the set V contains an open set of the form $B_\delta(0) \times V'$ with $\delta > 0$ and $0 \in V' \in \tau$. This implies that

$$\lambda x \in U \subset N \quad \forall \lambda \in B_\delta(0), x \in V'.$$

We set

$$U' = \bigcup_{\lambda \in B_\delta(0)} \lambda V' \subset U$$

Then U' is balanced (the proof being almost the same as for 1.2 c)). Moreover by the continuity of the scalar multiplication (or rather the division) it follows that $\lambda V'$ is open for all $\lambda \in$

$B_\delta(0) \setminus \{0\}$. Since $0 \in V'$, we can take the above union equivalently over all $\lambda \in B_\delta(0) \setminus \{0\}$, so that it is the union of open sets. Thus U' is also open and contains the origin.

d) Let $N \subset X$ be convex such that there exists $U \in \tau$ with $0 \in U \subset N$. Then $V := \text{int}(N)$ is open and convex by a). Moreover, $0 \in U \subset V$. By c) there exists an open set $V' \in \tau$ that is balanced and satisfies $0 \in V' \in V$. Consider then the convex hull $\text{co}(V')$ of V' , which is balanced by 1.2 d). Moreover it is convex and contains V' , so that it is a neighborhood of the origin. Hence it is absorbing by b). It remains to show that it is open. We prove the hint in order to conclude (recall that V' is open). Let $x = \sum_{i=1}^n \lambda_i x_i \in \text{co}(V')$. Without loss of generality we assume that $\lambda_1 \neq 0$. Then the set

$$\lambda_1 V' + \sum_{i=2}^n \lambda_i x_i$$

is open since X is a TVS. Moreover, it contains the point x and by definition it is contained in the convex hull of V' . Hence $\text{co}(V')$ is open.